# Hypertension: A metabolic disorder

Jasmine Tan

**GLMS CME** 

16th August 2023



#### Overview

- Burden of metabolic syndrome (Met S)
- Mechanisms of hypertension in metabolic dysfunction
- Therapeutic approaches to hypertension in Met S
  - Pharmacological considerations
  - Effect of GLP1 receptor agonists

## "Syndrome X"



#### • 1988 – Reaven

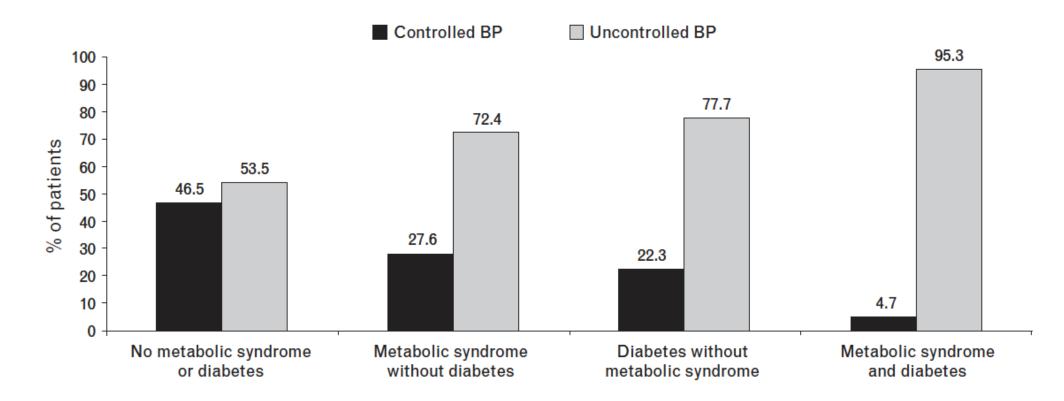
- Insulin resistance
- Abdominal obesity
- Hypertension
- Dyslipidemia
- Hypertension present in >80% of patients
- 1/3 of patients with essential hypertension

#### "Syndrome X"



- Higher prevalence of end organ damage
  - LV hypertrophy & atrial enlargement
  - Albuminuria & lower eGFR
  - Hypertensive retinopathy
  - Increased intima-media thickness

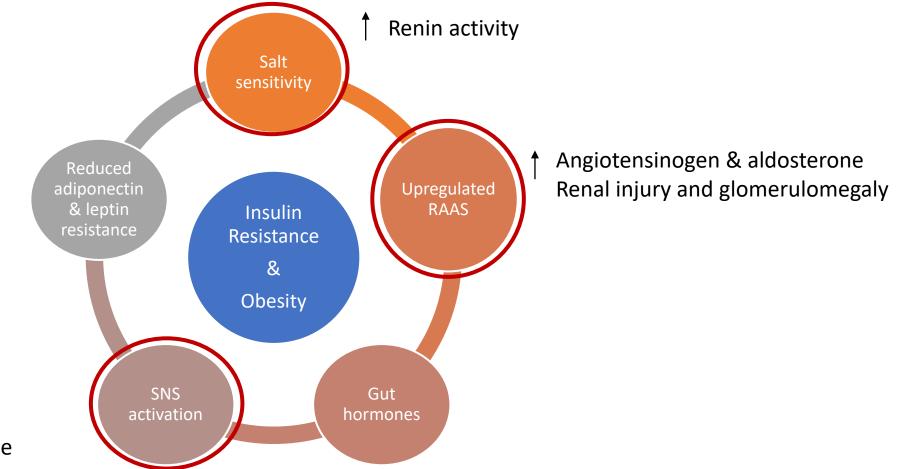
#### Table 1 The definitions of metabolic syndrome


|                                |                  | WHO [9]                                                                                        | NCEP [11]                                                                          | Modified NCEP [12]                                        | IDF [13]                                                                             | JIS [14]                                                      |
|--------------------------------|------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Criteria for diagnosis of MetS |                  | Diabetes diagnosis or<br>$FBG \ge 110 \text{ mg/dL}$<br>or IR with $\ge 2$ of the<br>following | Presence of any 3 of 5 Presence of any 3 of<br>of the following 5 of the following |                                                           | WC:>94 cm<br>(men);>80 cm<br>(women) with the<br>presence of ≥ 2 of<br>the following | Presence of any 3 of 5<br>of the following                    |
| Hyperglycemia                  | Fasting glucose  | Already required                                                                               | ≥110 mg/dl                                                                         | ≥ 100 mg/dL or on<br>Rx for elevated<br>glucose           | ≥ 100 mg/dl or diag-<br>nosed diabetes                                               | ≥ 100 mg/dl or diag-<br>nosed diabetes                        |
| Dyslipidemia                   | TG:              | >150 mg/dl                                                                                     | ≥ 150 mg/dl                                                                        | $\geq$ 150 mg/dL or on<br>TG Rx                           | ≥ 150 mg/dl or on<br>TG Rx                                                           | ≥ 150 mg/dl or on<br>TG Rx                                    |
|                                | HDL-C:           | M:<35 mg/dl<br>F:<40 mg/dl                                                                     | M:<40 mg/dl<br>F:<50 mg/dl or on<br>HDL-C Rx                                       | M: ≤ 40 mg/dL<br>F: ≤ 50 mg/dL or on<br>HDL-C Rx          | M: <40 mg/dl<br>F: < 50 mg/dl or on<br>HDL-C Rx                                      | M:<40 mg/dl<br>F:<50 mg/dl in<br>women or on HDL-C<br>Rx      |
| Hypertension                   | Blood pressure   | ≥ 140/90 mmHg                                                                                  | ≥ 130/85 mmHg                                                                      | SBP:≥130 mmHg or<br>DBP:≥85 mmHg or<br>on hypertension Rx | SBP:≥130 mmHg or<br>DBP:≥85 mmHg or<br>on hypertension Rx                            | SBP: ≥ 130 mmHg or<br>DBP: ≥ 85 mmHg or<br>on hypertension Rx |
| Obesity                        | WC               |                                                                                                | M:>102 cm<br>F:>88 cm                                                              | M:≥102 cm<br>F:≥88 cm                                     | Already required                                                                     | Ethnic dependent                                              |
|                                | Waist/hip ratio: | M:>0.9<br>F:>0.85 or<br>BMI>30 kg/m <sup>2</sup>                                               |                                                                                    |                                                           |                                                                                      |                                                               |
| Other                          |                  | UAE $\geq$ 20 µg/min                                                                           |                                                                                    |                                                           |                                                                                      |                                                               |

BMI: body mass index; DBP: diastolic blood pressure; F: female; FBG: fasting blood glucose; HDL-C: high density lipoprotein cholesterol; IDF: International Diabetes Federation; IR: insulin resistance; JIS: Joint Interim Statement; M: male; NCEP: National Cholesterol Education Program; Rx: treatment; SBP: systolic blood pressure; TG: triglyceride; UAE: urinary albumin excretion; WHO: World Health Organization; WC: waist circumstance

# MetS is prevalent in patients with diabetes General adult population 20 - 25%Type 2 diabetes **Up to 80%** Type 1 diabetes 24% F>M

Diabetol Metab Syndr 2021;13:25


#### Impact of Met S and T2D on BP control

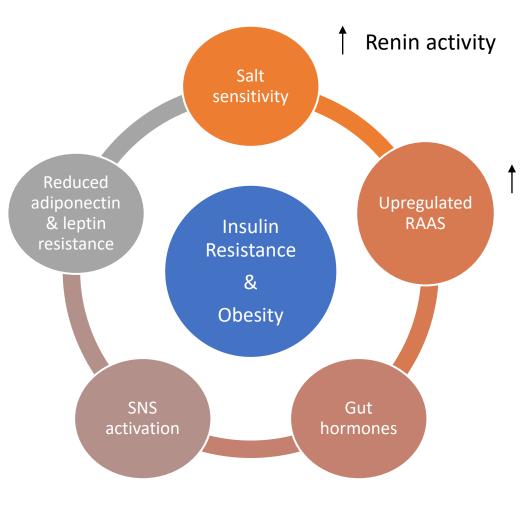


Percentage of patients with either metabolic syndrome or type 2 diabetes or both with controlled and uncontrolled blood pressure. Met S (OR 2.56) and T2D (OR 5.16) were significant risk factors for uncontrolled BP

2-fold greater CV risk in those with Met S compared with those without (3.23 vs 1.76 events per 100 patient years) J Hypertension 2008, 26:2064 – 2070 J Am Coll Cardiol 2004; 43:1817 – 1822

### Inter-relationship of HTN mechanisms in Met S

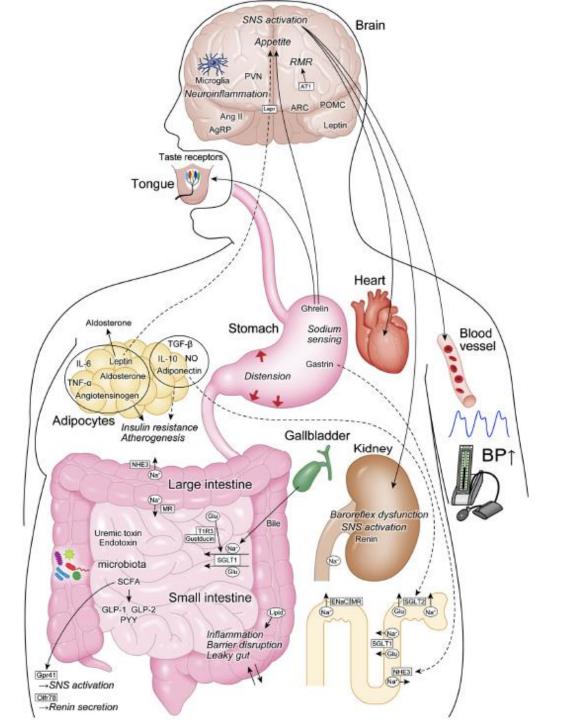



High caloric intake Increased leptin & leptin resistance Baroreflex dysfunction

> Curr Hypertens Rep (2019) 21: 63 Curr Hypertension Reviews 2020; 16: 12 – 18.

# Inter-relationship of HTN mechanisms in Met S

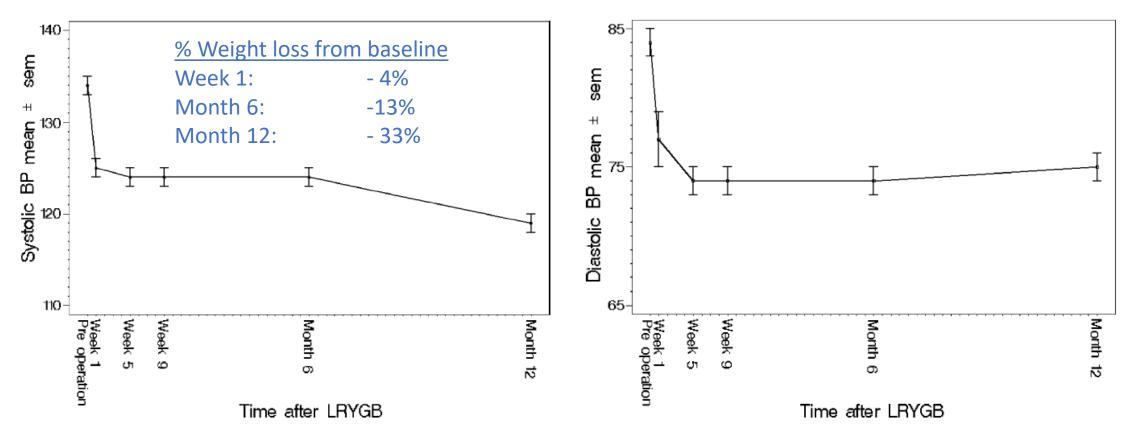
- 1. Hypertrophied adipocytes
- Pro-inflammatory
  /atherosclerotic adipokines
- 2. Low adiponectin
- Increased SGLT 2 cotransporters in kidney
- Salt sensitivity
- 3. Leptin resistance
- Exacerbates insulin resistance
- SNS activation


High caloric intake Increased leptin resistance Baroreflex dysfunction



Angiotensinogen & aldosterone Renal injury and glomerulomegaly

## Role of gut hormones


- Contribute to vascular function and BP
  - Gut microbiota vasoactive hormones
  - Intestinal MR (+ ENaC activity)
  - G protein gustducin ( + SGLT1 expression)
  - Gastrin (reduce Na/HE3 activity)
- GLP1 increases natriuresis via Na/HE3 activity
- Ghrelin inhibition of Ang II



#### Early BP reduction post laparoscopic Rou-en-Y bypass

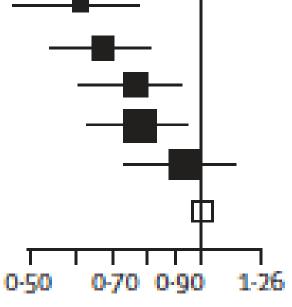
N=100, 79 stage 1 HTN

Reduction in SBP 11 mmHg and DBP 7 mmHg (first 6 months post op)



Obes Surg 2009; 19: 845 – 849

#### Neurohormonal changes post bariatric Sx


- BP reduction observed before significant weight loss achieved
  - Increased postprandial GLP-1 and peptide YY
  - Decreased leptin levels
  - Change in gut microbiota
  - Improved insulin sensitivity
  - Increase urinary sodium excretion (reduced SGLT 1 activity)
  - Reduction of SNS activity

## Non-pharmacological approaches

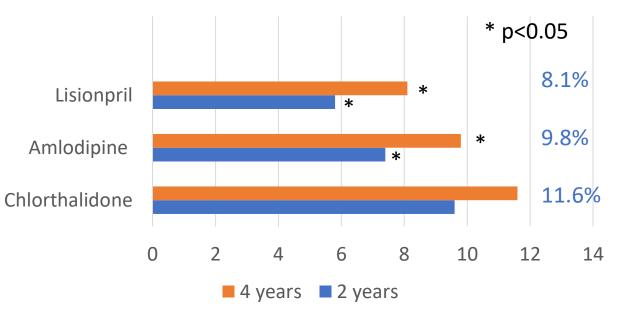
- Lifestyle measures
  - Caloric restriction (500 1000 calories/day)
  - Low saturated fats, trans fatty acids and cholesterol
  - Daily minimum of 30 min moderate intense exercise
  - Weight loss 7 10% over 6-12 months, with long term maintenance
  - Smoking cessation

# Effect of types of antihypertensive treatment in risk of incident diabetes





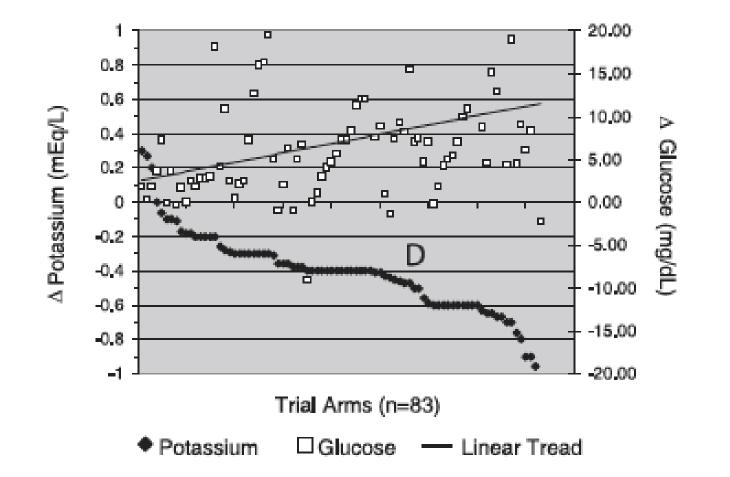
Odds ratio for incident diabetes


0-62 (0-51-0-77) p<0-0001 0-67 (0-57-0-79) p<0-0001 0-75 (0-63-0-89) p=0-001 0-79 (0-67-0-92) p=0-004 0-93 (0-78-1-11) p=0-43 Referent

Incoherence=0-054

#### Pharmacological considerations

#### **Thiazide diuretics**

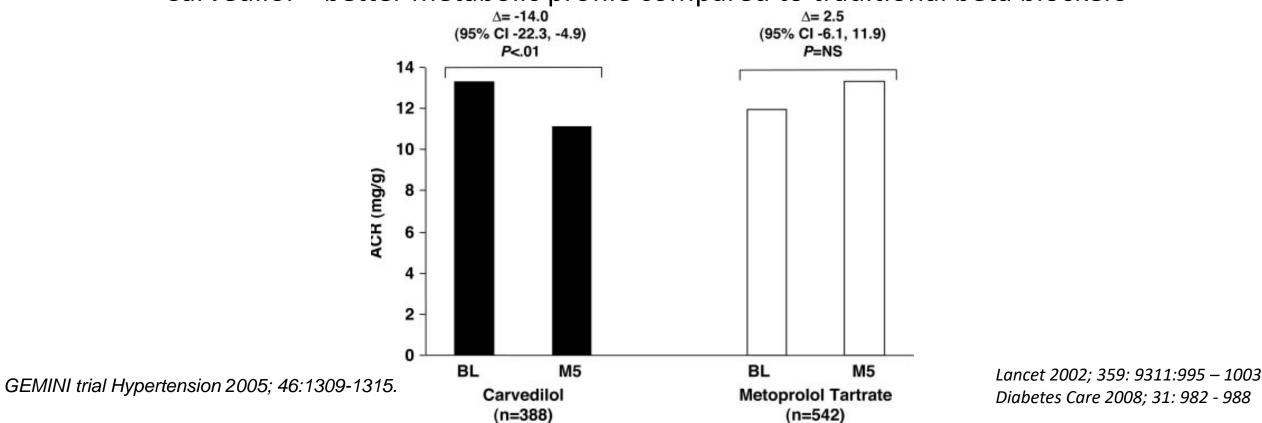

- Potential diabetogenic effect
- No increased CV risk in patients with IGT or diabetes on Chlorthalidone compared with patients on ACEi or CCB



#### Fasting BSL > 7 mmol/L

ALLHAT Hypertension. 2006;48:219-224

• Decreased insulin release in low-potassium state

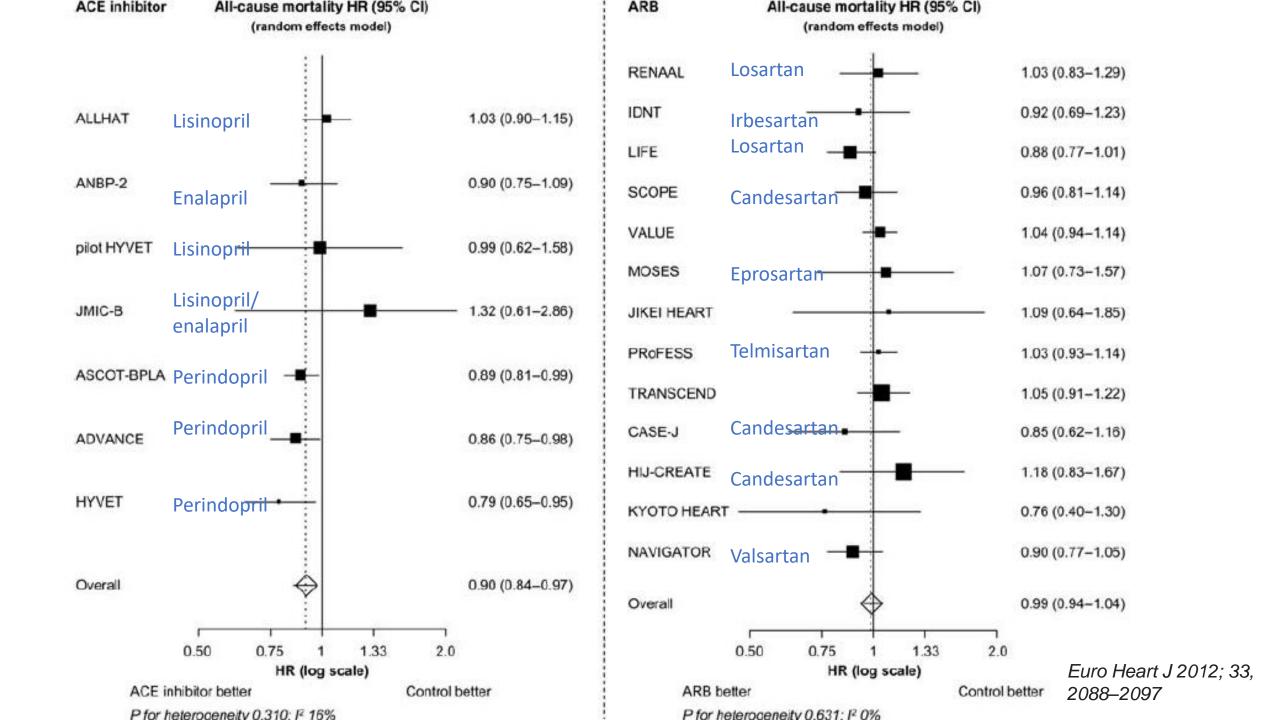



Hypertension. 2006; 48:219-224

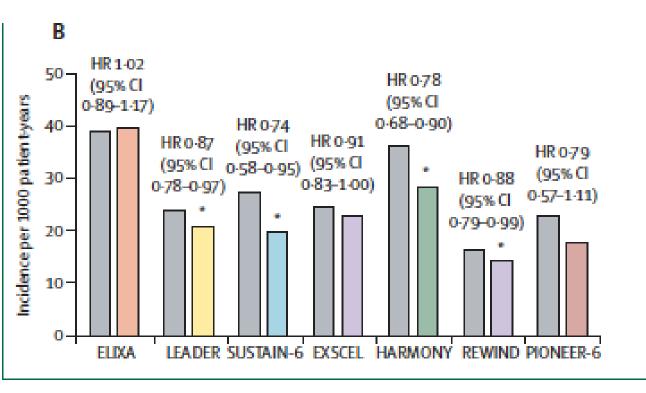
## Pharmacological considerations

#### Beta blockers

- Higher incidence of new onset diabetes (LIFE, ASCOT)
- Carvedilol better metabolic profile compared to traditional beta blockers




| Table 3. Cardiovascular and Metabolic Measures in the Modified Intention-to-Treat Population* |                        |             |                                     |             |                        |             |                                     |             |                        |                   |  |  |  |
|-----------------------------------------------------------------------------------------------|------------------------|-------------|-------------------------------------|-------------|------------------------|-------------|-------------------------------------|-------------|------------------------|-------------------|--|--|--|
|                                                                                               | Carvedilol (n = 454)   |             |                                     |             | Metoprolol (n = 657)   |             |                                     |             |                        |                   |  |  |  |
|                                                                                               |                        |             | Maintenance<br>Month 5 or           | 1           |                        |             | Maintenance<br>Month 5 or           | 1           | Treatment Difference   |                   |  |  |  |
| Parameter                                                                                     | No. of<br>Participants | Baseline    | Last Observation<br>Carried Forward | %<br>Change | No. of<br>Participants | Baseline    | Last Observation<br>Carried Forward | %<br>Change | % Change<br>(95% Cl)†  | <i>P</i><br>Value |  |  |  |
| BP, mean (SE), mm Hg‡<br>Systolic                                                             | 454                    | 149.4 (0.6) | 131.3 (0.7)                         | -17.9 (0.7) | 636                    | 149.2 (0.5) | 132.3 (0.6)                         | -16.9 (0.6) | -1.0 (-2.60 to 0.58)   | .21               |  |  |  |
| Diastolic                                                                                     | 454                    | 87.0 (0.4)  | 77.1 (0.4)                          | -10.0 (0.4) | 636                    | 86.3 (0.4)  | 76.8 (0.3)                          | -10.3 (0.3) | 0.29 (-0.61 to 1.20)   | .53               |  |  |  |
| Heart rate/min,<br>mean (SE)‡                                                                 | 454                    | 73.7 (0.5)  | 67.6 (0.4)                          | -6.7 (0.4)  | 636                    | 74.5 (0.4)  | 66.0 (0.4)                          | -8.3 (0.4)  | 1.6 (0.70 to 2.58)     | <.001             |  |  |  |
| Mean ACR, mg/g§                                                                               | 388                    | 13.3        | 11.1                                | -14.0       | 542                    | 12.0        | 13.3                                | 2.5         | -16.2 (-25.31 to -5.87 | .003              |  |  |  |
| Mean HOMA-IR§                                                                                 | 371                    | 6.0         | 5.8                                 | -9.1        | 540                    | 5.8         | 6.2                                 | -2.0        | -7.2 (-13.8 to -0.2)   | .004              |  |  |  |
| Mean plasma<br>glucose, mg/dL‡                                                                | 419                    | 147.0       | 154.7                               | 6.6         | 607                    | 147.4       | 158.6                               | 10.6        | -4.0 (-8.73 to 0.78)   | .10               |  |  |  |
| Mean serum<br>insulin, µIU/mL‡                                                                | 387                    | 21.6        | 19.6                                | -19.4       | 561                    | 21.2        | 20.2                                | -15.1       | -4.2 (-16.7 to 8.24)   | .51               |  |  |  |
| Mean body weight, kg‡                                                                         | 456                    | 98.2        | 97.2                                | 0.17        | 650                    | 97.0        | 98.2                                | 1.2         | -1.0 (-1.43 to -0.60)  | <.001             |  |  |  |
| Mean serum cholesterol<br>levels, mg/dL§                                                      |                        |             |                                     |             |                        |             |                                     |             |                        |                   |  |  |  |
| Total                                                                                         | 433                    | 185.6       | 181.7                               | -3.3        | 625                    | 185.6       | 185.6                               | -0.4        | -2.9 (-4.60 to -1.15)  | .001              |  |  |  |
| LDL                                                                                           | 411                    | 186.6       | 96.7                                | -4.0        | 572                    | 100.5       | 96.7                                | -2.7        | -1.3 (-4.31 to 1.78)   | .40               |  |  |  |
| HDL                                                                                           | 432                    | 46.4        | 42.5                                | -5.5        | 625                    | 46.4        | 42.5                                | -5.7        | 0.2 (-1.68 to 2.12)    | .83               |  |  |  |
| Mean triglycerides,<br>mg/dL§                                                                 | 433                    | 159.4       | 168.3                               | 2.2         | 625                    | 168.3       | 186.0                               | 13.2        | -9.8 (-13.68 to -5.75  | ) <.001           |  |  |  |


JAMA 2004; 292 (18): 2227 - 2236

### Pharmacological considerations

- RAS inhibitors
  - Drugs with neutral effect on glucose and lipid metabolism
  - No difference between ACEi and ARB in risk of incident diabetes
  - ? Difference in CV events and mortality



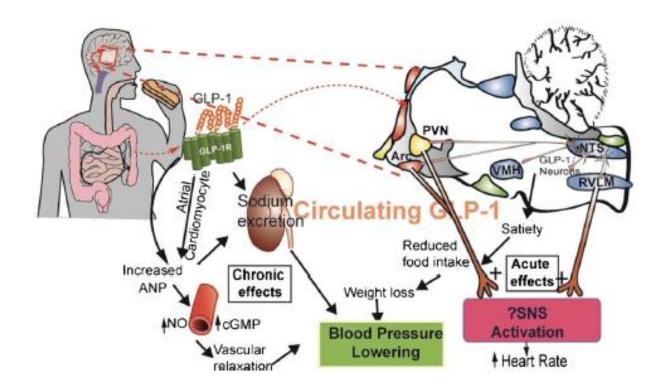
## Role of GLP1 agonists



- Clinical trials in patients with T2D and hypertension
  - Extensively with Liraglutide
  - Reduced SBP by 7.7 mmHg over 7 weeks and loss of 2L extracellular fluid
  - Reduced MACE and all-cause mortality by 12% (HR 0.88, 95% CI 0.82–0.94)

Lancet 2021; 398: 262 - 276

#### Actions of incretins (GLP1 and GIP)


#### Liver **Glucose** production **GI** tract Oral glucose load or GIP meal consumption DPP-4 (3-42)VE INACTIVE STIMULATION INACTIVATION P-1 GLP-1 (9-36)Neuroprotection Brain Memory Behaviour Kidneys Pancreas Insulin secretion Sympathetic nervous system **B-cell proliferation** Natriuretic Insulin biosynthesis Diuretic Weight **Glucagon** secretion GFR Food intake **B-cell** apoptosis Protection Antihypertension

#### DPP IV inhibitor (Vildagliptin)

GLP1R agonist (Dulaglutide) resistant to DPP 4

Improve glucose metabolism increase insulin secretion suppress glucagon hypothalamic appetite suppression Reduction in weight

#### Incretins and BP regulation



- GIP and GLP1 secreted from intestinal cells post food ingestion
- GLP1R expressed in gut, kidneys, heart, lungs, etc
- DPP4 expression upregulated in T2D
  - Proximal tubules
  - Podocytes & mesangial cells
  - Preglomerular vascular SM
- GLP1R downregulated in glomeruli and tubules in diabetic rats
- Mechanisms in experimental models

#### Discussion

- Met S and hypertension have a bidirectional relationship
- Met S contributes to poorly controlled hypertension and increased CV risk
- Complex inter-relationship of multiple hypertensive mechanisms
- RAS blockers appear to be most appropriate pharmacotherapy
- GLP1 R agonist therapies/ surgical bariatric surgery may address other mechanisms of hypertension in MetS
- Further studies required to explore the utility of GLP1R agonists in Met S without diabetes

### Patient approach: Metabolic hypertension

- Evaluate potential causes for increased BMI
- Weight reduction and maintenance
- Address other risk factors in metabolic syndrome
- Individualize pharmacotherapy
- Salt reduction

Thanks for your attention.

Questions?

